
Parallel algorithms for distance-based and density-based outliers

Elio Lozano
University of Puerto Rico
Mathematics Department

Mayaguez, PR 00680
elio li@math.uprm.edu

Edgar Acũna
University of Puerto Rico
Mathematics Department

Mayaguez, PR 00680
edgar@cs.uprm.edu

Abstract

An outlier is an observation that deviates so much from
other observations as to arouse suspicion that it was ge-
nerated by a different mechanism. Outlier detection has
many applications, such as data cleaning, fraud detection
and network intrusion. The existence of outliers can indi-
cate individuals or groups that exhibit a behavior that is
very different from most of the individuals of the dataset. In
this paper we design two parallel algorithms, the first one
is for finding out distance-based outliers based on nested
loops along with randomization and the use of a pruning
rule. The second parallel algorithm is for detecting density-
based local outliers. In both cases data parallelism is used.
We show that both algorithms reach near linear speedup.
Our algorithms are tested on four real-world datasets co-
ming from the Machine Learning Database Repository at
the UCI.

1 Introduction

According to Hawkins [6], “An outlier is an observation
that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism”.
Almost all the studies that consider outlier identification
as their primary objective are in the field of statistics. A
comprehensive treatment of outliers appears in Barnet and
Lewis [1]. They provide a list of about 100 tests for de-
tecting outliers in data following well known univariate dis-
tributions. However, Real-world data are commonly multi-
variate with unknown distribution.

Detecting outliers, instances in a database with unusual
properties, is an important data mining task. People in
the data mining community got interested in outliers after
Knorr and Ng [10] proposed a non-parametric approach to
outlier detection based on the distance of an instance to its
nearest neighbors. Outlier detection has many applications
among them: Fraud detection and network intrusion, and

data cleaning. Frequently, outliers are removed to improve
accuracy of the estimators. However, this practice is not
recommendable because sometimes outliers can have very
useful information. The presence of outliers can indicate
individuals or groups that have behavior very different from
a standard situation.

One might think that multivariate outliers can be de-
tected based on the univariate outliers in each feature, but
this is not true. On the other hand, an instance can have
values that are outliers in several features but the whole ins-
tance might not be a multivariate outlier. A basic method
for detecting multivariate outliers is to observe the outliers
that app ear in the distribution of the Mahalanobis square
distance of the all instances. There are several methods
for detecting multivariate outlier: Robust statistical-based
outlier detection ([5],[15],[16]), outlier detection by clus-
tering ([5],[9],[13]), outlier detection by neural networks
[8], distance-based outlier detection([2], [11],[12],[14]) and
density-based local outlier detection[4].

Hung and Cheung (2000), proposed parallel algorithms
for mining distance-based outliers as proposed in [11] and
[12]. The authors claimed that their algorithm can be used
to parallelize the algorithm for detecting density-based local
outliers, although they did not carried out any experiment.
Ruoming and Agrawal (2001) use local nearest neighbor
property to parallelize KNN classifier. We had used some
strategies described in Skillircon (1999) to parallelize Bay
algorithm. This paper is organized as follows, in Section
2 focuses on distance-based outlier detection. Section 3 of
this paper considers density local-based. The experimental
results appear in section 4, and the conclusions of our work
are presented in section 5.

2 Distance-based outlier detection

Given a distance measure on a feature space, two diffe-
rent definitions of distance-based outliers are the following:

1. An instancex in a dataset D is an outlier with para-
meters p andλ if at least a fraction p of the objects are a

1

distance greater thanλ from x [11], [12]. This definition
has certain difficulties such as the determination ofλ and
the lack of a ranking for the outliers. Thus an instance with
very few neighbors within a distanceλ can be regarded as
strong an outlier as an instance with more neighbors within
a distanceλ. Furthermore, the time complexity of the algo-
rithm is O(vn2), where v is the number of features and n is
the number of instances. Hence it is not an adequate defini-
tion to use with datasets having a large number of instances.

2. Given the integer numbers k and n (k<n), outliers
are the top n instances with the largest distance to their k-th
nearest neighbor [15]. One shortcoming of this definition is
that it only considers the distance to the k-th neighbor and
ignores information about closer points. An alternative is
to use the greatest average distance to the k nearest neigh-
bors. The drawback of this alternative is that it takes longer
calculate.

2.1 The Bay’s Algorithm.

Bay and Schwabacher [2] proposed a simple nested loop
algorithm that tries to reconcile definitions 1 and 2. It gives
near linear time performance when the data is in random
order and a simple pruning rule is used. The performance
of the algorithm in the worst case is of quadratic order. The
algorithm is described in Fig. 1.

The main idea in the algorithm is that for each instance
in D one keeps track of the closest neighbors found so far.
When an instance’s closest neighbors achieve a score lower
than a cutoff then the instance is removed because it can no
longer be an outlier. Bay and Schwabacher used the as score
function the sum of the distances to the k neighbors, but
also the average distance as well the median distance can be
considered. As more instances are processed the algorithm
finds more extreme outliers and the cutoff increases along
with pruning efficiency.

Bay and Schwabacher showed experimentally that their
algorithm is linear with respect to the number of neighbors
and that is almost linear with respect to the number of ins-
tances. Using six large datasets they found a complexity of
order O(nα) whereα varied from 1.13 to 1.32. Although
this reduction is favorable, yet it is heavy for large data
sets. For this reason we propose a parallel algorithm that
use Bay’s algorithm.

2.2 Parallel Bay’s Algorithm

We have constructed a parallel algorithm for the Bay’s
algorithm based on the Local nearest neighbors property.
Once the data are distributed between processes, each
process computes its local neighbors and send its results to
master, which compute the global neighbors and then finds
the top outliers. After that it sends the cutoff parameter to

Input: k: number of nearest neighbors;
n: number of outliers to return;
D: dataset randomly ordered,
B: size of blocks in which D is divided.
Let distance(x,y) the Euclidean distance between x and y.
Let maxdist(x,Y) maximum distance between x and an example in Y.
Let Closest(x,Y,k) return the k closest examples in Y to x.
begin
1. c← 0 // set the cutoff for pruning to 0
2.O← ∅ // initialize to the empty set
3.while B← get-next-block(D){ //load a block from D
4. Neighbors(b)← ∅ for all b in B
5. for each d in D{
6. for each b in B, b6= d{
7. if | Neighbors(b)| < k or

distance(b,d)< maxdist(b,Neighbors(b)){
8. Neighbors(b)← Closest(b ,Neighbors(b)∪d,k)
9. if (score(Neighbors(b),b)<c){
10. remove b from B
11. }}}}
12. Top(B∪O,n)//keep only the top n outliers
13. c←min(score(o)) for all o∈ O
14.}
15.return O
end
Output : O, a set of outliers

Figure 1. Bay’s Algorithm

each process. The proposed algorithm is given in the figure
2.

In the worst case Bay said that its algorithm run in
O(N2) in adittion toN/blocksize ∗ N data access. Ex-
perimentally using polynomial regression of empirical run-
ning time, he founded an exponent varyng from 1.13 to
1.32. This exponent was be found from fittingt = aN b

wheret is the total time,a and b are constants. Assum-
ing that our algorithm has simmilar complexity for our ex-
perimental dataset, we denote this complexity asO(Nα),
where1.13 ≤ α ≤ 1.32. So the upper bound of total
time of the parallel Bay algorithm is(Nαp + n)tcomp +
NptI/O + Nαktcomm (the sum of computation time, I/O
time and communication time). Wherep is the number of
processes.

3 Density-based local outlier detection

For this type of outlier the density of the neighbors of
a given instance plays a key role. Furthermore an instance
is not explicitly classified as either outlier or non-outlier;
instead for each instance a local outlier factor (LOF) is

2

begin
1. c← 0 // set the cutoff for pruning to 0
2.O ← ∅ // initialize to the empty set
3.while B← get-next-block(D){//load a block from D
4. Neighbors(b)← ∅ for all b in B
5. for each d in LocalD{

//Each process compute its local neighborhoods
6. for each b in B, b6= d{
7. if | Neighbors(b)| < k or

distance(b,d)< maxdist(b,Neighbors(b)){
8. Neighbors(b)← Closest(b,Neighbors(b)∪d,k)
9. if (score(Neighbors(b),b)<c){
10. remove b from B
11. }}}}
12. Each process sends its local neighborhoods to master
13. Master process{
14. Computes global neighbors from local neighbors
15. computes Top(B∪O,n)// keeps only the top n outliers
16. computes c←min(score(o)) for all o in O
17. Broadcast the cutoff parameter}
18.}
19.return O
end

Figure 2. Parallel Bay’s Algorithm

computed which will give an indication of how strongly
an instance can be considered an outlier. Breuning et al.
[4], show through an example the weakness of the distance-
based method in identifying certain type of outliers.

The following definitions are needed in order to formali-
ze the algorithm to detect density-based local outliers:

1. k-distance of an instance x. For any positive inte-
ger k, the k-distance of an instance x, denoted by k-
distance(x), is defined as the distance d(x,y) between x
an instance y∈ D such that:

(i) for at least k instances y’∈ D–{x} it holds that
d(x,y’) ≤ d(x,y),

(ii) for at most k-1 instances y’∈ D–{x} it holds that
d(x,y’) < d(x,y).

2. k-distance neighborhood of an instance x. Given the
k-distance of x, the k-distance neighborhood of x con-
tains every instance whose distance from x is not
greater than the k-distance; i.e.Nk−distance(x)(x) =
{q ∈ D − {x} : d(x, q) ≤ k − distance(x)}

3. reachability distance of an instance x w.r.t. object y.
Let k be a positive integer number. The reachability
distance of an instance x with respect to the instance y
is defined as

reach − distk(x, y) = max{k −
distance(y), d(x, y)}

4. local reachability density of an instance x. It is given
by

lrdMinpts(x) =

∑

o∈NMinpts(x)

reach− distMinpts(x, o)

|NMinpts(x)|

−1

The lrd is the averagereachability distancebased on
theMinPts-nearest neighbor of the instance x.

5. local outlier factor of an instance x. The local outlier
factor of x is defined as

LOFMinpts(x) =

∑
o∈NMinpts(x)

lrdMinpts(o)
lrdMinpts(x)

|NMinpts(x)|

The density-based local algorithm to detect outliers re-
quires only one parameter,MinPts, which is the number of
nearest neighbors used in defining the local neighborhood
of the instance. The LOF measures the degree to which
an instance x can be considered as an outlier. Breuning
et al.[4] show that for instances deep inside a cluster their
LOF’s are close to 1 and should not be labelled as a lo-
cal outlier. Since LOF is not monotonic, they recommen-
ded finding the LOF for each instance of the datasets using
MinPts-nearest neighbor, where MinPts assumes a range
of values from MinPtsLB to MinPtsUB. They also sug-
gested MINPtsLB=10 and MinPtsUB=20. Having deter-
mined MInPtsLB and MinPtsUB, the LOF of each instan-
ce is computed within this range. Finally all the instances
are ranked with respect to the maximum LOF value within
the specified range. That is, the ranking of an instance x is
based on:

Max{LOFMinPts(x) / MinPtsLB≤MinPts≤MinPtsUB}
The LOF algorithm to detect density-based local outliers

is shown in Fig. 3. Breuning et al. discusses in detail the
time complexity of the LOF algorithm.

The serial LOF’s algorithm appears in figure 3

3.1 Parallel LOF

The major task to be carried out in the serial LOF
algorithm relies on the computation of KDNeighbors
(which is the matrix that contains the elements of D with
its respective k-neighbors). For this reason we attempt
to parallelize in that step. Each process computes its
respective KDNeighbors matrix, and then send its result
to the master process, which collects the results and then

3

Input:
klb and kub the lower and upper bounds of k-distance
neighborhoods.
D a set of examples.
The number of top outliers
Output: lof a vector with local density factors
Let kdis-neighbors(D,k) return a matrix that containts
the k-distances neighborhoods and their k-distances.
Let reachability(KDNeighbors) return the local reachability
density of each p in D
Begin
1.lof←NULL
2.for each k in{klb,..., kub} {
3. KDNeighbors← kdis-neighbors(D,k)
4. lrddata← reachability(KDNeighbors,k)
5. for each p in KDNeighbors
6. templof[i]← sum(lrddata[o∈ N(p)])/lrddata[i])/ |N(p)|
7. lof←max{lof , templof}}
8.return top(lof)
End
Output: lof

Figure 3. The LOF Algorithm

computes the reachability and local outlier factor. The
proposed parallel algorithm is given in the figure 4.

1.lof←NULL
2.for each k in{klb,..., kub} {
3. Each process computes its respective KDNeighbors
and sends it to master
4. Master process collects the partial KDNeighbors
and finds the KDNeighbors matrix
5. Master process{
6. lrddata← reachability(KDNeighbors,k)
7. for each p in KDNeighbors{
8. templof[i]← sum(lrddata[o∈ N(p)])/lrddata[i])/ |N(p)|
9. lof←max{lof , templof}}
10. }
11.return lof

Figure 4. Parallel LOF Algorithm

Parallel LOF uses the master slave paradigm. Master
process sends the data set to slaves, to calculate distances
between its parts. Then master process collects the results
and find the LOF factor for each observation.

The total upper bound of computation time of LOF al-
gorithm is NvtI/O + (kub − klb)((N2v + 2Nk)tcomp),
whereN is the number of instances,klb andkub are the

lower and upper bounds,v the number of variables,k is
the k-distance neighborhoods. Therefore, the parallel al-
gorithm has a total upper bound ofNvtI/O + (kup −
klb)((N(N

p v + 2Nk)tcomp + Nktcomm)), wherep is the
number of processes.

4 Experimental results

We had tested our algorithms in the following enviro-
nment.

4.1 Cluster Description

Our computer environment consists of a cluster of 4
nodes HP Itanium 2 6M zx6000 (IA64 Architecture). Each
node has 2 processors running at 1.5 GHz with 4 GB of
main memory. Each running Red Hat Advanced Worksta-
tion 2.1. We had implemented our algorithms in C++ (gcc
version 3.2.3) using some libraries of LAM MPI version 7.0
[14], under Red Hat Advanced Workstation 2.1.

4.2 Data sets

Four well-known Machine Learning datasets,Landsat,
Census, Shuttle, andCovtypeare used to show the perfor-
mance of our parallel algorithms. These datasets are avail-
able on the Machine Learning database repository at the
University California, Irvine [6].

• Landsat. It consists of 4435 instances. each instance
represents a satellite image with 36 features. The data
is classified in six classes.

• Shuttle. The NASA Shuttle (Catlett, 1991), contains
43,500 training instances, with 9 continuous attributes.
Therea are seven clases.

• Census. This dataset consists of 14 features measured
on 32561 subjects. The features try to classify the sub-
jects in two classes: ”income< 50k”, and ”income≥
50k”. A 7 percent of subjects have incomplete infor-
mation and we have deleted them.

• Covtype. This dataset obtained from the US Forest
Service (USFS). It contains measures of seven types
of soils with 581,012 instances, and 54 attributes.

4.3 Description of Input and Output Parameters

In the Bay’s algorithm, we setup with big numbers (of
order106) the initial k distance to the k neighbors for each
b ∈ B in Bay’s algorithm (see line 4). Also we use the follo-
wing parameters: Block size = 1000, number of neighbors
= 10, number of top outliers = 10. In The LOF algorithm,

4

we set up k-lower bound = 10, k- upper bound = 20, number
of top outliers = 10. For both algorithms we detect outliers
only in the first class.

4.4 Runtime and Speedup

In Figures 5, 6, 7 and 8 we show overall runtime for
our parallel algorithms, and its corresponding speedups, for
different number of processors and different datasets. Our
algorithms overall shows good speedup results. The slow-
down observed in Figure 6 for Covtype is mainly due to
the high communication cost in the phase of exchange the
neighborhoods, this occurs because the block size is small
for the choice of our parameters. For Landsat occurs too
this slowdown because the data set is small. But for the
other datasets, the speedup is almost linear. The speedup
of parallel LOF (Figure 8) reaches linear speedup for all
datasets.

Figure 5. Runtime for Parallel Bay’s Algorithm

5 Conclusion

There are plenty of algorithm for detecting outliers. Two
of them are the Bay’s and LOF algorithms, which have
good performance in runtime and outlier detection. We
have constructed parallel version of both algorithms. Para-
llel Bay’s algorithm based in the nearest neighbor property,
reaches good performance, in which each processor runs the
same Bay’s algorithm but locally in its own dataset. After
that it sends its local neighborhoods to the master process.
The Master process receives the partial neighbors and com-
putes the cutoff and sends it to the slaves for the next ite-
ration. This parallel Bay’s algorithm reaches almost linear
speedup. On the other hand the heavy work in the LOF

Figure 6. Speedup for Parallel Bay’s Algo-
rithm

algorithm resides in the computation of the k-distance ne-
arest neighborhoods for each observation. We proposed a
new parallel LOF algorithm. The master process sends the
entire data set to slaves, and assigns their task. Each slave
computes its respective kdistance nearest neighborhoods of
its respective data, and sends it back to the master. Once that
the master receives the results from the slaves, it computes
the local reachability and LOF factor for each observation.
This algorithm gives good speedup, because there is a few
communication. All our algorithms are tested and validated
with four real datasets.

Figure 7. Runtime for Parallel LOF Algorithm

ACKNOWLEDGMENT

5

Figure 8. Speedup for Parallel LOF Algorithm

This research was partially supported by grant N00014-
00-1-0360 from ONR. The authors want to thank Caroline
Rodriguez for her suggestions on programming the algo-
rithms.

References

[1] V. Barnett and T. Lewis.Outliers in Statistical Data. John
Wiley, New York, 1994.

[2] S. Bay and M. Schwabacher. Mining distance-based out-
liers in near linear time with randomization and a simple
pruning rule. Proceedings of the Ninth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 2003.

[3] C. Blake and C. Mertz. Uci repos-
itory of machine learning databases.
[http://www.ics.uci.edu/mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science, 1998.

[4] M. Breuning, H. Kriegel, R. Ng, and J. Sander. LOF: Identi-
fying density-based local outliers.ACM SIGMOD Interna-
tional Conference on Management of Data, 2000.

[5] J. Hardin and D. Rocke. Outlier detection in the multi-
ple cluster setting using the minimum covariance determi-
nant estimator.Computational Statistics and Data Analysis,
44:625–638, 2004.

[6] D. Hawkins. Identification of Outliers.Chapman and Hall,
London, 1980.

[7] V. Hodge and J. Austin. A survey of outlier detection
methodologies.Artificial Intelligence Review, 22:85–126,
2004.

[8] E. Hung and D. Cheung. Parallel Mining of Outliers in Large
Database.Distributed and Parallel Databases. Kluver Aca-
demic Publishers., (12):5–26, 2004.

[9] L. Kaufman and P. Rousseeuw.Finding Groups in Data: An
Introduction to Cluster Analysis.Wiley, New York, 1990.

[10] E. Knorr and R. Ng. Algorithms for mining distance-based
outliers in large datasets.In Proc. 24th Int. Conf. Very Large
Data Bases VLDB, pages 392–403, 1998.

[11] E. Knorr, R. Ng, and V. Tucakov. Aistance-based outliers:
Algorithms and applications.VLDB Journal: Very Large
Data Bases, (8(3-4)):237–253, 2000.

[12] R. Ng and J. Han. Efficient and effective clustering meth-
ods for spatial data mining.Proc. 20th Int. Conf. on Very
Large Databases. Morgan and Kaufmann Publishers, San
Francisco, (8(3-4)):44–155, 1994.

[13] P. Pacheco.Parallel Programming with MPI. Morgan Kauff-
mann Publishers Inc., 1997.

[14] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algo-
rithms for mining outliers from large data sets.In Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, pages 427–438, 2000.

[15] D. Rocke and D. Woodruff. Computational connections be-
tween robust multivariate analysis and clustering.In COMP-
STAT 2002 Proc. in Computational Statistics, Wolfgang H}.

[16] P. Rousseeuw and A. Leroy.Robust Regression and Outlier
Detection. MJohn Wiley, 1987.

[17] J. Ruoming and G. Agrawal. A Middleware for developing
parallel data mining applications.Proc. of the First SIAM
Conference on Data Mining, 2001.

[18] D. Skillicorn. Strategies for Parallel Data Mining.IEEE
Concurrency, 4(7):36–35, 2001.

6

